PDA

View Full Version : Book: Fundamentals of Digital Communications



phunghm
2010-08-04, 12:37 PM
Book: Fundamentals of Digital Communications
http://www.4shared.com/file/EmP1YMCN/fundamentals-of-digital-commun.html

1 Introduction
1.1 Components of a digital communication system 2
1.2 Text outline 5
1.3 Further reading 6
2 Modulation
2.1 Preliminaries 8
2.2 Complex baseband representation 18
2.3 Spectral description of random processes 31
2.3.1 Complex envelope for passband random processes 40
2.4 Modulation degrees of freedom 41
2.5 Linear modulation 43
2.5.1 Examples of linear modulation 44
2.5.2 Spectral occupancy of linearly modulated signals 46
2.5.3 The Nyquist criterion: relating bandwidth to symbol rate 49
2.5.4 Linear modulation as a building block 54
2.6 Orthogonal and biorthogonal modulation 55
2.7 Differential modulation 57
2.8 Further reading 60
2.9 Problems 60
2.9.1 Signals and systems 60
2.9.2 Complex baseband representation 62
2.9.3 Random processes 64
2.9.4 Modulation 66
3 Demodulation
3.1 Gaussian basics 75
3.2 Hypothesis testing basics 88
3.3 Signal space concepts 94
3.4 Optimal reception in AWGN 102
3.4.1 Geometry of the ML decision rule 106
3.4.2 Soft decisions 107
3.5 Performance analysis of ML reception 109
3.5.1 Performance with binary signaling 110
3.5.2 Performance with M-ary signaling 114
3.6 Bit-level demodulation 127
3.6.1 Bit-level soft decisions 131
3.7 Elements of link budget analysis 133
3.8 Further reading 136
3.9 Problems 136
3.9.1 Gaussian basics 136
3.9.2 Hypothesis testing basics 138
3.9.3 Receiver design and performance analysis for the AWGN channel 140
3.9.4 Link budget analysis 149
3.9.5 Some mathematical derivations 150
4 Synchronization and noncoherent communication
4.1 Receiver design requirements 155
4.2 Parameter estimation basics 159
4.2.1 Likelihood function of a signal in AWGN 162
4.3 Parameter estimation for synchronization 165
4.4 Noncoherent communication 170
4.4.1 Composite hypothesis testing 171
4.4.2 Optimal noncoherent demodulation 172
4.4.3 Differential modulation and demodulation 173
4.5 Performance of noncoherent communication 175
4.5.1 Proper complex Gaussianity 176
4.5.2 Performance of binary noncoherent communication 181
4.5.3 Performance of M-ary noncoherent orthogonal signaling 185
4.5.4 Performance of DPSK 187
4.5.5 Block noncoherent demodulation 188
4.6 Further reading 189
4.7 Problems 190
5 Channel equalization
5.1 The channel model 200
5.2 Receiver front end 201
5.3 Eye diagrams 203
5.4 Maximum likelihood sequence estimation 204
5.4.1 Alternative MLSE formulation 212
5.5 Geometric model for suboptimal equalizer design 213
5.6 Linear equalization
5.6.1 Adaptive implementations 223
5.6.2 Performance analysis 226
5.7 Decision feedback equalization 228
5.7.1 Performance analysis 230
5.8 Performance analysis of MLSE 231
5.8.1 Union bound 232
5.8.2 Transfer function bound 237
5.9 Numerical comparison of equalization techniques 240
5.10 Further reading 242
5.11 Problems 243
5.11.1 MLSE 243
6 Information-theoretic limits and their computation
6.1 Capacity of AWGN channel: modeling and geometry 253
6.1.1 From continuous to discrete time 256
6.1.2 Capacity of the discrete-time AWGN channel 257
6.1.3 From discrete to continuous time 259
6.1.4 Summarizing the discrete-time AWGN model 261
6.2 Shannon theory basics 263
6.2.1 Entropy, mutual information, and divergence 265
6.2.2 The channel coding theorem 270
6.3 Some capacity computations 272
6.3.1 Capacity for standard constellations 272
6.3.2 Parallel Gaussian channels and waterfilling 277
6.4 Optimizing the input distribution 280
6.4.1 Convex optimization 281
6.4.2 Characterizing optimal input distributions 282
6.4.3 Computing optimal input distributions 284
6.5 Further reading 287
6.6 Problems 287
7 Channel coding
7.1 Binary convolutional codes 294
7.1.1 Nonrecursive nonsystematic encoding 295
7.1.2 Recursive systematic encoding 297
7.1.3 Maximum likelihood decoding 298
7.1.4 Performance analysis of ML decoding 303
7.1.5 Performance analysis for quantized observations 309
7.2 Turbo codes and iterative decoding 311
7.2.1 The BCJR algorithm: soft-in, soft-out decoding 311
7.2.2 Logarithmic BCJR algorithm 320
7.2.3 Turbo constructions from convolutional codes 325
7.2.4 The BER performance of turbo codes
7.2.5 Extrinsic information transfer charts 329
7.2.6 Turbo weight enumeration 336
7.3 Low density parity check codes 342
7.3.1 Some terminology from coding theory 343
7.3.2 Regular LDPC codes 345
7.3.3 Irregular LDPC codes 347
7.3.4 Message passing and density evolution 349
7.3.5 Belief propagation 352
7.3.6 Gaussian approximation 354
7.4 Bandwidth-efficient coded modulation 357
7.4.1 Bit interleaved coded modulation 358
7.4.2 Trellis coded modulation 360
7.5 Algebraic codes 364
7.6 Further reading 367
7.7 Problems 369
8 Wireless communication
8.1 Channel modeling 380
8.2 Fading and diversity 387
8.2.1 The problem with Rayleigh fading 387
8.2.2 Diversity through coding and interleaving 390
8.2.3 Receive diversity 393
8.3 Orthogonal frequency division multiplexing 397
8.4 Direct sequence spread spectrum 406
8.4.1 The rake receiver 409
8.4.2 Choice of spreading sequences 413
8.4.3 Performance of conventional reception in CDMA systems 415
8.4.4 Multiuser detection for DS-CDMA systems 417
8.5 Frequency hop spread spectrum 426
8.6 Continuous phase modulation 428
8.6.1 Gaussian MSK 432
8.6.2 Receiver design and Laurent’s expansion 433
8.7 Space–time communication 439
8.7.1 Space–time channel modeling 440
8.7.2 Information-theoretic limits 443
8.7.3 Spatial multiplexing 447
8.7.4 Space–time coding 448
8.7.5 Transmit beamforming 451
8.8 Further reading 451
8.9 Problems

freqzt
2010-08-04, 04:01 PM
who is the author?

phunghm
2010-08-04, 04:16 PM
Author: Upamanyu Madhow
University of California, Santa Barbara

Publisher: CAMBRIDGE UNIVERSITY PRESS

zeuscane
2010-08-04, 04:45 PM
Without password
or
http://www.filefactory.com/file/b7a5cb/n/Fundamentals.of.Digital.Communication.0521874149.rar

Regard

zeuscane