PDA

View Full Version : nokia wimax link budget tool



MINTO
2009-01-14, 06:26 PM
Hi, try it
http://depositfiles.com/files/f7ng99yli

MINTO
2009-01-14, 08:03 PM
it is for mobile wimax 802.16e

croleg
2009-03-27, 10:46 AM
Fading margin - is not calculated!

Cepillo
2009-03-27, 05:08 PM
it is for mobile wimax 802.16e

NSN haven't got other dot16 solution except dot16e. But, it can be upgraded to LTE standart (3GPP) in near future. And Nokia is memdber in TGm (802.16m).
The TGm Leadership Team is:
Shkumbin Hamiti (Editor, System Description Document)
Nokia
I have a question:
Will SC-FDMA be used in 802.16m?
I don't see any mention of SC-FDMA in the latest draft of IEEE 802.16m-08/003r7.
http://wirelessman.org/tgm/index_older.html
http://ieee802.org/16/tgm/
Have a nice day (who have GMT-)!

Cepillo
2009-03-27, 06:45 PM
Why LTE uses SC-FDMA in Up-link.
"Both WiMAX and LTE use OFDMA for the downlink and so have broadly similar performance, for any given RF bandwidth and set of conditions. By contrast, the modulation techniques for their uplinks are entirely different.
WiMAX (including Mobile WiMAX) also use OFDM for uplink, while LTE uses a new technique—SC-FDMA (Single Carrier Frequency Division Multiple Access). Hyung G. Myung's site [hgmyung.googlepages.com/scfdma] provides a detailed description of SC-FDMA.
SC-FDMA resembles OFDM in many respects, but involves using a Fourier transform to convert OFDM's separate sub-carriers on separate frequencies into a different, time-domain, form. With OFDMA, several handsets can transmit upstream at the same time, within the same set of 512 sub-carriers, with each handset transmitting data on different sub-carriers. This reduces the frequency diversity of each handset's signal, but enables several of them to transmit upstream at the same time. SC-FDMA also enables simultaneous upstream transmissions, and the receiver is able to separate the separate components from each handset after suitable mathematical transformation.
SC-FDMA, as it is planned to be implemented in LTE, results in a transmission properties with some of the characteristics of both OFDM and DS-CDMA (Direct Sequence Code Division Multiple Access). These are two completely different modulation techniques, and SC-FDMA can be considered as a novel, but useful hybrid of the two.
Both SC-FDMA and OFDM can be used with fast-moving mobile devices, with some compromises in the total achievable data rate. Part of the problem in accommodating fast-moving devices is the Doppler shift resulting from the movement, including from the mobile device's point of view. Another is coping with the rapid changes in propagation environment, such as those due to multipath reflections.
SC-FDMA can also be used with MIMO, as it will be in LTE. As we discuss below, SC-FDMA will also be the uplink modulation scheme of the future WiMAX 802.16m system.
The primary attraction of SC-FDMA over OFDMA is the former's significantly reduced Peak to Average Power Ratio (PAPR). ODMA's output waveform is the sum of hundreds of sub-carriers, each of which is composed of uncorrelated levels of sine and cosine signal. The result of summing a large number of small uncorrelated (essentially random, with respect to each other) numbers is that most of the time, the sum is relatively small too. However, occasionally, when many of the sub-carriers are strongly positive, or strongly negative, the sum is a much larger value than usual.
If these values were numbers in a digital computer system, this would present no problems. However the digital OFDMA signal is converted to an analogue signal by a Digital to Analogue Converter (DAC), and amplified to drive the transmit antenna. The signal propagates through space, being very strongly attenuated and mixed with interference and other noise, where it arrives at the receive antenna. There, it is amplified again and then fed to a high resolution, high speed, Analogue to Digital Converter (ADC). Now in a digital form, the receive signal is analysed by a Fourier Transform operation and many other processes to recover the transmitted data.
Because OFDM signals have a high PAPR, the linear amplifiers which must be used to drive the transmit antenna, and in the receiver, must have a large headroom compared to the average value of the signal they are handling. It is possible to set the amplifier's power supply so that the very highest peaks, which are quite infrequent, will be clipped—but the more clipping which occurs, the greater the distortion, which adds noise to the received signal and makes it harder to discern the finer increments of modulation: four or more levels of sine and cosine in each sub-carrier.
Signals with a high PAPR are most problematic in battery operated transmitters. The RF amplifier must have a relatively high positive and negative power supply in order that its transistors can lift and drop the output waveform linearly to follow the extreme, but relatively infrequent, peaks of the OFDM signal. While the average current used by the amplifier may be quite low, and its average output level also quite low, all this current is drawn from these high voltage supplies.
For a signal with a low PAPR, the same average signal level can be achieved with an amplifier with much lower power supply voltages, because the signal does not have high peaks.
Consequently, to achieve a given average power output, an amplifier with +/- 12 volt supplies might be required for an OFDM signal (allowing for some low, but acceptable, level of noise due to the very highest peaks being clipped) or with the same amplifier with +/- 4 volt supplies for an SC-FDMA signal with a much lower PAPR.
Since the average current drawn by both amplifiers is the same, and the power drawn is the current multiplied by the power supply voltages of the amplifier, in this example, the SC-FDMA transmitter only uses a third of the power of the OFDMA transmitter.
Inefficiency in transmitter amplifiers presents few problems in base-stations, but is a major determinant of battery life in a cellphone or other mobile device. Consequently, considering all the tradeoffs, for LTE it was decided that SC-FDMA was a better choice for the uplink modulation technique.
This is likely to result in LTE being more suitable for handheld devices then WiMAX. This advantage of lower power consumption would not be so important in a device with a bigger battery, such as a laptop—and of course it is no advantage for a mains-powered fixed WiMAX service."

faisalusuf
2009-06-22, 04:36 AM
nice sharing

jskhalid
2010-03-29, 05:27 PM
Hi , could someone reupload this file plz.......

BR

RNONards
2010-04-30, 11:36 AM
Please try this link.

http://www.4shared.com/document/dRrRyPcs/NOKIA_Mobile_WiMAX_dimensionin.html

Thanks and Reputation greatly appreciated.